Skip to Content



A cache by jREST Send Message to Owner Message this owner
Hidden : 12/5/2010
1.5 out of 5
2 out of 5

Size: Size: regular (regular)

Join now to view geocache location details. It's free!


How Geocaching Works

Please note Use of services is subject to the terms and conditions in our disclaimer.

Geocache Description:

Lutetium is a chemical element with the symbol Lu and atomic number 71. It is in the d-block of the periodic table, not the f-block, but the IUPAC classifies it as a lanthanide. It is one of the elements that traditionally were included in the classification, "rare earths". One of its radioactive isotopes (176Lu) is used in nuclear technology to determine the age of meteorites. Lutetium usually occurs in association with the element yttrium and is sometimes used in metal alloys and as a catalyst in various chemical reactions.

What Lutetium looks like.

Physical properties
Lutetium is a silvery white corrosion-resistant trivalent metal. It has the smallest atomic radius and is the heaviest and hardest of the rare earth elements. Lutetium has the highest melting point of any lanthanide, probably related to the lanthanide contraction.

Occurrence and production
Found with almost all other rare-earth metals but never by itself, lutetium is very difficult to separate from other elements. The principal commercially viable ore of lutetium is the rare earth phosphate mineral monazite: (Ce, La, etc.) PO4 which contains 0.003% of the element. The abundance of lutetium in the Earth crust is only about 0.5 mg/kg. The main mining areas are China, United States, Brazil, India, Sri Lanka and Australia. The world production of lutetium (in the form of oxide) is about 10 tonnes per year. Pure lutetium metal has only relatively recently been isolated and is very difficult to prepare. It is one of the rarest and most expensive of the rare earth metals with the price about US$ 10,000 per kg, or about one-fourth that of Gold.

Because of the rarity and high price, lutetium has very few commercial uses. However, stable lutetium can be used as catalysts in petroleum cracking in refineries and can also be used in alkylation, hydrogenation, and polymerization applications.

Some other applications include:

Lutetium-176 (176Lu) has been used to date the age of meteorites.
Lutetium aluminium garnet (Al5Lu3O12) has been proposed for use as a lens material in high refractive index immersion lithography.
Lutetium-177 (177Lu), when bound to Octreotate (a somatostatin analogue), is used experimentally in targeted radionuclide therapy for neuroendocrine tumors.
Cerium-doped lutetium oxyorthosilicate (LSO) is currently the preferred compound for detectors in positron emission tomography (PET.)
Use as a pure beta emitter, using lutetium which has been exposed to neutron activation. A tiny amount of lutetium is added as a dopant to gadolinium gallium garnet (GGG), which is used in magnetic bubble memory devices.

Like other rare-earth metals, lutetium is regarded as having a low degree of toxicity, but its compounds should be handled with care nonetheless. Metal dust of this element is a fire and explosion hazard. Lutetium plays no biological role in the human body.


Check out this interactive Periodic Table.

Check out this Lutetium video. Prepared by The University of Nottingham.

Additional Hints (No hints available.)



104 Logged Visits

Found it 102     Write note 1     Publish Listing 1     

View Logbook

**Warning! Spoilers may be included in the descriptions or links.

Current Time:
Last Updated:
Rendered From:Unknown
Coordinates are in the WGS84 datum

Return to the Top of the Page

Reviewer notes

Use this space to describe your geocache location, container, and how it's hidden to your reviewer. If you've made changes, tell the reviewer what changes you made. The more they know, the easier it is for them to publish your geocache. This note will not be visible to the public when your geocache is published.