Skip to content

Pine Mountain Overthrust Fault EarthCache

This cache has been locked, but it is available for viewing.
Difficulty:
1.5 out of 5
Terrain:
1.5 out of 5

Size: Size:   not chosen (not chosen)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:

Fine example of a fault line.

Here you are looking at the effects of Pine Mountain Overthrust Fault Line. The Pine Mountain Overthrust Fault Line is 125-mile overthrust fault created by mountain building forces that occurred here roughly 230 million years ago. The sandstone and limestone bedrock that forms this unique feature dip 30-45 degrees from the crest to the southeast.

In geology, a fault or fault line is a planar rock fracture, which shows evidence of relative movement. Large faults within the Earth's crust are the result of shear motion and active fault zones are the causal locations of most earthquakes. Earthquakes are caused by energy release during rapid slippage along faults. The largest examples are at tectonic plate boundaries but many faults occur far from active plate boundaries. Since faults do not usually consist of a single, clean fracture, the term fault zone is used when referring to the zone of complex deformation that is associated with the fault plane. The two sides of a non-vertical fault are called the hanging wall and footwall. By definition, the hanging wall occurs above the fault and the footwall occurs below the fault. This terminology comes from mining. When working a tabular ore body the miner stood with the footwall under his feet and with the hanging wall hanging above him.



The creation and behaviour of faults, in both an individual small fault and within the greater fault zones which define the tectonic plates, is controlled by the relative motion of rocks on either side of the fault surface.

Because of friction and the rigidity of the rock, the rocks cannot simply glide or flow past each other. Rather, stress builds up in rocks and when it reaches a level that exceeds the strain threshold, the accumulated potential energy is released as strain, which is focused into a plane along which relative motion is accommodated — the fault.

Strain is both accumulative and instantaneous depending on the rheology of the rock; the ductile lower crust and mantle accumulates deformation gradually via shearing whereas the brittle upper crust reacts by fracture, or instantaneous stress release to cause motion along the fault. A fault in ductile rocks can also release instantaneously when the strain rate is too great. The energy released by instantaneous strain release is the cause of earthquakes, a common phenomenon along transform boundaries.

Faults can be categorized into three groups based on the sense of slip. A fault where the main sense of movement (or slip) on the fault plane is vertical is known as a dip-slip fault. Where the main sense of slip is horizontal the fault is known as a transcurrent or strike-slip fault. Oblique-slip faults have significant components of both strike and dip slip.

For all naming distinctions, it is the orientation of the net dip and sense of slip of the fault which must be considered, not the present-day orientation, which may have been altered by local or regional folding or tilting.

Dip-slip faults include both normal and reverse. A normal fault occurs when the crust is extended. Alternatively such a fault can be called an extensional fault. The hanging wall moves downward, relative to the footwall. A downthrown block between two normal faults dipping towards each other is called a graben. An upthrown block between two normal faults dipping away from each other is called a horst. Low-angle normal faults with regional tectonic significance may be designated detachment faults.

A reverse fault is the opposite of a normal fault — the hanging wall moves up relative to the footwall. Reverse faults are indicative of shortening of the crust. The dip of a reverse fault is relatively steep, greater than 45°.

A thrust fault has the same sense of motion as a reverse fault, but with the dip of the fault plane at less than 45°. Thrust faults typically form ramps, flats and fault-bend (hanging wall and foot wall) folds. Thrust faults are responsible for forming nappes and klippen in the large thrust belts.

The fault plane is the plane that represents the fracture surface of a fault. Flat segments of thrust fault planes are known as flats, and inclined sections of the thrust are known as ramps. Typically thrust faults move within formations by forming flats, and climb up section with ramps.

Fault-bend folds are formed by movement of the hangingwall over a non-planar fault surface and are found associated with both extensional and thrust faults.

Faults may be reactivated at a later time with the movement in the opposite direction to the original movement (fault inversion). A normal fault may therefore become a reverse fault and vice versa.

The fault surface is usually near vertical and the footwall moves either left or right or laterally with very little vertical motion. Strike-slip faults with left-lateral motion are also known as sinistral faults. Those with right-lateral motion are also known as dextral faults. A special class of strike-slip faults is the transform faults which are a plate tectonics feature related to spreading centers such as mid-ocean ridges.

A fault which has a component of dip-slip and a component of strike-slip is termed an 'oblique-slip fault'. Nearly all faults will have some component of both dip-slip and strike-slip, so defining a fault as oblique requires both dip and strike components to be measurable and significant. Some oblique faults occur within transtensional and transpressional regimes, others occur where the direction of extension or shortening changes during the deformation but the earlier formed faults remain active.

To get credit for this EC, post a photo of you with GPS and the Fault in the back ground. Please answer the following questions.

1. What type of fault do you think this is?

2. Estimate how high the exposed fault is from the posted coordinates.

3. What popular public place is near the EC?

Logs with no photo of the actual cacher logging the find or failure to answer questions will result in a log deletion. Exceptions will be considered if you contact me first (I realize sometimes we forget our cameras or the batteries die). Logs that not not meet logging requirements will be deleted without notice.

I have used sources available to me by using google search to get information for this earth cache. I am by no means a geologist. I use books, internet, and asking questions about geology just like 99.9 percent of the geocachers who create these great Earth Caches. I enjoy Earth Caches and want people to get out and see what I see everytime I go and explore this great place we live in.

Additional Hints (No hints available.)