Skip to content

Vanadium - Element 23 Traditional Cache

Hidden : 5/2/2021
Difficulty:
2 out of 5
Terrain:
1.5 out of 5

Size: Size:   micro (micro)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:


First the junior high chemistry lesson:

Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) somewhat stabilizes the free metal against further oxidation.

Andrés Manuel del Río discovered compounds of vanadium in 1801 in Mexico by analyzing a new lead-bearing mineral he called "brown lead". Though he initially presumed its qualities were due to the presence of a new element, he was later erroneously convinced by French chemist Hippolyte Victor Collet-Descotils that the element was just chromium. Then in 1830, Nils Gabriel Sefström generated chlorides of vanadium, thus proving there was a new element, and named it "vanadium" after the Scandinavian goddess of beauty and fertility, Vanadís (Freyja). The name was based on the wide range of colors found in vanadium compounds. Del Rio's lead mineral was ultimately named vanadinite for its vanadium content. In 1867 Henry Enfield Roscoe obtained the pure element.

Andrés Manuel del Río

Vanadium occurs naturally in about 65 minerals and in fossil fuel deposits. It is produced in China and Russia from steel smelter slag. Other countries produce it either from magnetite directly, flue dust of heavy oil, or as a byproduct of uranium mining. It is mainly used to produce specialty steel alloys such as high-speed tool steels, and some aluminium alloys. The most important industrial vanadium compound, vanadium pentoxide, is used as a catalyst for the production of sulfuric acid. The vanadium redox battery for energy storage may be an important application in the future.

Large amounts of vanadium ions are found in a few organisms, possibly as a toxin. The oxide and some other salts of vanadium have moderate toxicity. Particularly in the ocean, vanadium is used by some life forms as an active center of enzymes, such as the vanadium bromoperoxidase of some ocean algae.

Vanadium was discovered in 1801 by the Spanish mineralogist Andrés Manuel del Río. Del Río extracted the element from a sample of Mexican "brown lead" ore, later named vanadinite. He found that its salts exhibit a wide variety of colors, and as a result he named the element panchromium (Greek: παγχρώμιο "all colors"). Later, Del Río renamed the element erythronium (Greek: ερυθρός "red") because most of the salts turned red upon heating. In 1805, French chemist Hippolyte Victor Collet-Descotils, backed by del Río's friend Baron Alexander von Humboldt, incorrectly declared that del Río's new element was an impure sample of chromium. Del Río accepted Collet-Descotils' statement and retracted his claim.

In 1831 Swedish chemist Nils Gabriel Sefström rediscovered the element in a new oxide he found while working with iron ores. Later that year, Friedrich Wöhler confirmed del Río's earlier work. Sefström chose a name beginning with V, which had not yet been assigned to any element. He called the element vanadium after Old Norse Vanadís (another name for the Norse Vanr goddess Freyja, whose attributes include beauty and fertility), because of the many beautifully colored chemical compounds it produces. In 1831, the geologist George William Featherstonhaugh suggested that vanadium should be renamed "rionium" after del Río, but this suggestion was not followed.

The isolation of vanadium metal was difficult. In 1831, Berzelius reported the production of the metal, but Henry Enfield Roscoe showed that Berzelius had produced the nitride, vanadium nitride (VN). Roscoe eventually produced the metal in 1867 by reduction of vanadium(II) chloride, VCl2, with hydrogen. In 1927, pure vanadium was produced by reducing vanadium pentoxide with calcium.

The first large-scale industrial use of vanadium was in the steel alloy chassis of the Ford Model T, inspired by French race cars. Vanadium steel allowed reduced weight while increasing tensile strength (ca. 1905). For the first decade of the 20th century, most vanadium ore was mined by American Vanadium Company from the Minas Ragra in Peru. Later, the demand for uranium rose, leading to increased mining of that metal's ores. One major uranium ore was carnotite, which also contains vanadium. Thus, vanadium became available as a by-product of uranium production. Eventually, uranium mining began to supply a large share of the demand for vanadium.

Vanadium is the 20th most abundant element in the earth's crust; metallic vanadium is rare in nature (known as native vanadium), but vanadium compounds occur naturally in about 65 different minerals.

At the beginning of the 20th century a large deposit of vanadium ore was discovered, the Minas Ragra vanadium mine near Junín, Cerro de Pasco, Peru. For several years this patrónite (VS4) deposit was an economically significant source for vanadium ore. In 1920 roughly two thirds of the worldwide production was supplied by the mine in Peru. With the production of uranium in the 1910s and 1920s from carnotite (K2(UO2)2(VO4)2·3H2O) vanadium became available as a side product of uranium production. Vanadinite (Pb5(VO4)3Cl) and other vanadium bearing minerals are only mined in exceptional cases. With the rising demand, much of the world's vanadium production is now sourced from vanadium-bearing magnetite found in ultramafic gabbro bodies. If this titanomagnetite is used to produce iron, most of the vanadium goes to the slag, and is extracted from it.

Vanadium is mined mostly in South Africa, north-western China, and eastern Russia. In 2013 these three countries mined more than 97% of the 79,000 tonnes of produced vanadium.

Vanadium is also present in bauxite and in deposits of crude oil, coal, oil shale, and tar sands. In crude oil, concentrations up to 1200 ppm have been reported. When such oil products are burned, traces of vanadium may cause corrosion in engines and boilers. An estimated 110,000 tonnes of  Black shales are also a potential source of vanadium. During WW II some vanadium was extracted from alum shales in the south of Sweden.

Many vegetables are rich in vanadium

 

 

Additional Hints (Decrypt)

Gur onex vf jbefr guna vgf ovgr

Decryption Key

A|B|C|D|E|F|G|H|I|J|K|L|M
-------------------------
N|O|P|Q|R|S|T|U|V|W|X|Y|Z

(letter above equals below, and vice versa)