SK:
Xenolity v Košiciach
Xenolit je názov fragmentu horniny alebo minerálu (vtedy sa nazýva xenokryst), uzatvoreného v horninovom bloku[1], ktorý má voči tomuto bloku výrazne odlišné zloženie (uzavrenina horniny rovnakého, príp. podobného typu sa nazýva autolit). Týmto termínom sa často označujú úlomky hornín v magmatitoch, ktoré sa dostali do magmy počas jej výstupu k povrchu, no xenolity sa dajú nájsť aj v sedimentoch, prípadne v meteoritoch. Xenolity môžu byť čiastočne asimilované, najmä na ich okrajoch, kde dochádzalo k reakciám s okolitou magmou[2].

Príklad xenolitu[3]
Xenolity sú často horninou, ktorá bola vložená do magmy počas jej ochladzovania. Magma je rozpustná hornina pod zemskou kôrou. Ak magma vystúpi nad povrch Zeme, napríklad počas vulkanickej erupcie, nazýva sa lávou. Láva je povrchová verzia magmy[4].
Xenolity sú obvykle ľahko rozpoznateľné, pretože sa často líšia zložením, hustotou a farbou od okolitej horniny. Xenolity sú zvyčajne malé v porovnaní s celkovým objemom horniny. Avšak xenolity sa môžu pohybovať od jednotlivých kryštálov (xenokryštalov) až po fragmenty horniny o dĺžke niekoľkých metrov[4].
Existuje niekoľko možných zdrojov xenolitov a xenokryštalov nájdených na povrchu Zeme. Magma sa môže vkladať do existujúcich hornín (niekedy nazývaných vidiecke horniny) a pri tomto procese môže získať fragmenty týchto vidieckých hornín. Xenolity sa môžu vytvárať aj zo zlomkov stien magmatickej komory alebo konduitu. Láva počas explózivných vulkanických erupcií môže tiež zachytiť xenolity, alebo ich môže zachytiť, keď tečie po povrchu Zeme. Tieto fragmenty, uväznené v magme alebo lave, ale neroztopia sa v nej, stávajú sa xenolitmi[4].

vznik xenolitov[4]
Ako magma vystupuje alebo tečie z povrchu Zeme, ochladzuje sa pri kontakte s atmosférou alebo vodou. Láva sa ochladzuje pomerne rýchlo a vytvárajú sa rôzne druhy vyvretých hornín. Xenolity a xenokryštaly sú ovplyvňované teplotou. Xenolit môže stratiť svoje jedinečné vlastnosti, ak sa rozpustí do okolitej magmy. Keď sa ochladzuje, materiál môže prestať byť xenolitom a namiesto toho sa môže stať metamorfnou horninou. Metamorfné horniny vznikajú vo vnútri Zeme v dôsledku zmien v teplote a tlaku, ktoré ovplyvňujú existujúce horniny (často vyvreté alebo sedimentárne)[4].
Xenolity bázických a ultrabázických hornín (ako peridotity, kimberlity a lamprofýry) poskytujú dôležité informácie o zložení zemského plášťa, ktorý je priamo nedostupný. Magma týchto hornín je generovaná vo vrchnom plášti a pri svojom výstupe často strháva úlomy hornín (napr. peridotity). Ich chemická a minerálna analýza je jeden z mála spôsobov, ako sa dajú získať priame poznatky o stavbe plášťa Zeme. V kimberlitoch prítomnosť určitých minerálov v xenolitoch indikuje hĺbku, z akej bol kimberlit vynesený na povrch Zeme (napr. plagioklas je stabilný do 25 km, spinely v hĺbkach 25 až 60 km a pod 60 km sa stabilnými stávajú granáty s obsahom hliníka – grosulár, pyrop)[3].
Vyvreté horniny
Vyvreté horniny obsahujú xenolity najhojnejšie, vznikajú kryštalizáciou, z malej časti tiež sklovitým tuhnutím magmy. Pri postupnom ochladzovaní magmatické taveniny kryštalizujú jednotlivé horninotvorné minerály a vytvárajú sa magmatické horniny. Charakter horniny, ktorá z magmy vznikne, je závislý nielen od zloženia samotnej magmy, ale často tiež od fyzikálnych podmienok prostredia, v ktorom tuhnutie magmy prebieha[5].

Xenolit vo vyvretej hornine - žule[4]
V hlbších častiach zemskej kôry tuhne magma pomaly. Za takýchto podmienok vznikajú horniny s jednotlivými, obvykle už makroskopicky rozlíšiteľnými minerálmi. Ak sa však magma rozlieva na zemský povrch alebo na morské dno, dochádza k jeho veľmi rýchlemu ochladzovaniu. Preto nie je tiež dostatočný časový priestor na to, aby sa mohli vytvoriť makroskopicky pozorovateľné minerály, a vznikajú tak nerasty spravidla len mikroskopických rozmerov alebo magma tuhne sklovito. Ak preniká magma do trhlín a puklín v zemskej kôre, tuhne v nich v podobe tzv. žíl[5].
Laické vysvetlenie problematiky:
Xenolity sú kúsky horniny, ktoré sa nachádzajú vnútri inej horniny. Vznikajú v zemskom zemskej kôry a v hornej plášti, ktoré sú najvrchnejšími vrstvami našej planéty.
Xenolity vznikajú, keď je hlboko v Zemi veľa tepla a tlaku. Toto teplo a tlak môže spôsobiť, že tavená hornina, nazývaná magma, sa začne vznášať smerom k povrchu Zeme. Keď sa magma pohybuje zemskou kôrou, môže nabrať kúsky okolitej horniny. Tieto kúsky sa zachytia v magme a stávajú sa xenolitmi.
Predstav si to ako robenie sendviča. Mažeš maslo na chlieb a náhodou sa niektoré omrvinky chleba prichytia k maslu. V tejto analógii sú omrvinky chleba podobné xenolitom a maslo je podobné taviacej sa magme. Xenolity sú kúsky zemskej kôry, ktoré unášala pohybujúca sa magma.
Vedci študujú xenolity, aby sa dozvedeli viac o vnútri Zeme, pretože nám môžu povedať, aké druhy hornín sa nachádzajú hlboko pod povrchom. Je to ako nahliadnutie do tajnej receptúry Zeme, čo vedcom pomáha pochopiť viac o histórii našej planéty a o tom, z čoho je vytvorená.
Otázky(POVINNÉ):
Na zalogovanie kešky musíš správne zodpovedať a poslať odpovede na otázky. Odpovede zasielaj cez môj profil, ideálne cez message center. Logovať “Found It” možeš ihneď po zaslaní odpovedí na otázky. Logy bez zaslaných odpovedí a pridanej fotky budem mazať.
Každý logujúci zasiela odpovede sám za seba.
Otváracie hodiny železničnej stanice:
Po-Ne: 3.00-1:00
Na úvodných súradniciach sa v budove železničnej stanice nachádzajú na zemi xenolity. Môžeš ich pozorovať vo vstupnej hale(na prízemí), cestou k nástupištiam ako aj na schodoch smerom na prvé poschodie.
1. Čo sú xenolity?
2. V akej vyvretej hornine sú xenolity usadené na hlavnej Košickej vlakovej stanici?
3. Ako vznikli xenolity, ktoré môžme pozorovať v budove Košickej železničnej stanice?
4. Ako sa tieto xenolity líšia od vyvretej (hostiteľskej) horniny (farba, štruktúra)?
5. Vyber si ľubovoľný xenolit na skúmanie. Aký má tvar a veľkosť?
6. Vysvetli vlastnými slovami, prečo tento xenolit nemožno považovať za autolyt.
7. Pridaj fotku z miesta, Teba, Tvojho osobného predmetu, xWG, alebo niečoho čo Ťa jasne identifikuje.
EN:
Xenoliths in Košice
A xenolith ("foreign rock") is a rock fragment (country rock) that becomes enveloped in a larger rock during the latter's development and solidification. In geology, the term xenolith is almost exclusively used to describe inclusions in igneous rock entrained during magma ascent, emplacement, and eruption.[6] Xenoliths may be engulfed along the margins of a magma chamber, torn loose from the walls of an erupting lava conduit or explosive diatreme, or picked up along the base of a flowing body of lava on the Earth's surface. A xenocryst is an individual foreign crystal included within an igneous body. Examples of xenocrysts are quartz crystals in silica-deficient lava and diamonds within kimberlite diatremes. Xenoliths can be non-uniform within individual locations, even in areas that are spatially limited, e.g. rhyolite-dominated lava of Niijima volcano (Japan) contains two types of gabbroic xenoliths which are of different origin - they were formed in different temperature and pressure conditions.[7]
Although the term xenolith is most commonly associated with inclusions in igneous rocks,[ 8] a broad definition could also include rock fragments which have become encased in sedimentary rock.[9][10] Xenoliths have been found in some meteorites.[11]
To be considered a true xenolith, the included rock must be identifiably different from the rock in which it is enveloped; an included rock of a similar type is called an autolith or a cognate inclusion[12].

xenolith example[12]
A xenolith is often a rock that was embedded in magma as it was cooling. Magma is the molten rock beneath the Earth’s crust. If the magma rises above the Earth’s surface, for example during a volcanic eruption, it is referred to as lava. Lava is the extrusive equivalent of magma[4].
Xenoliths are usually easy to recognize because they are often visibly different in composition, density, and color from the encompassing rock. Xenoliths are generally small in size, relative to the overall body of rock. However, xenoliths can range in size from single crystals (xenocrysts) to rock fragments of several meters. The large-scale inclusion of foreign rock strata at the margins of an igneous intrusion is called a roof pendant[4].
There are a number of possible sources for xenoliths and xenocrysts found at the Earth’s surface. Magma can intrude into pre-existing rocks (sometimes called country rocks) and as it does so, might pick up fragments of this country rock. Xenoliths can also be formed from fragments of the walls of a magma chamber or conduit. Xenoliths can also be picked up by lava during explosive volcanic eruptions or can be picked up by lava as it flows along Earth’s surface. These fragments, trapped in the magma or lava but not melting into it, become xenoliths[4].

xenolith formation[4]
As magma erupts or flows from the Earth’s surface, it is cooled by exposure to the atmosphere or water. Lava cools fairly quickly, and different types of igneous rocks are formed. Xenoliths and xenocrysts are affected by temperature. A xenolith may lose its unique qualities if it melts into the surrounding magma. As it cools, the material may cease being a xenolith and instead become a metamorphic rock. Metamorphic rocks are rocks formed inside the Earth by temperature and pressure changes that affect existing rocks, (often igneous or sedimentary)[4].
Xenoliths and xenocrysts provide important information about the composition of the otherwise inaccessible mantle. Basalts, kimberlites, lamproites, and lamprophyres, which have their source in the upper mantle, often contain fragments and crystals assumed to be a part of the originating mantle mineralogy. Xenoliths of dunite, peridotite, and spinel lherzolite in basaltic lava flows are one example. Kimberlites contain, in addition to diamond xenocrysts, fragments of lherzolites of varying composition. The aluminium-bearing minerals of these fragments provide clues to the depth of origin. Calcic plagioclase is stable to a depth of 25 km (16 mi). Between 25 km (16 mi) and about 60 km (37 mi), spinel is the stable aluminium phase. At depths greater than about 60 km, dense garnet becomes the aluminium-bearing mineral. Some kimberlites contain xenoliths of eclogite, which is considered to be the high-pressure metamorphic product of basaltic oceanic crust, as it descends into the mantle along subduction zones[4].
Igneous Rocks
Igneous rocks contain abundant xenoliths, primarily formed through crystallization and, to a lesser extent, the glassy solidification of magma. As the magmatic melt gradually cools, individual rock-forming minerals crystallize, giving rise to igneous rocks. The characteristics of the rock resulting from magma depend not only on the composition of the magma itself but also frequently on the physical conditions of the environment in which the magma solidifies[5].

Xenolith in Igneous rock - granite[4]
In the deeper parts of the Earth's crust, magma cools slowly, leading to the formation of rocks with distinct, usually macroscopically distinguishable minerals. However, when magma erupts onto the Earth's surface or the ocean floor, it rapidly cools. Consequently, there is insufficient time for macroscopically observable minerals to develop, resulting in minerals that are typically only of microscopic dimensions, or the magma solidifies glassy. If magma intrudes into cracks and fissures in the Earth's crust, it solidifies within them in the form of so-called veins[5].
Simple explanation:
Xenoliths are pieces of rock that are found within another kind of rock. They form in the Earth's crust and upper mantle, which are the outermost layers of our planet.
Xenoliths form when there is a lot of heat and pressure deep within the Earth. This heat and pressure can cause molten rock, called magma, to rise up towards the Earth's surface. As the magma moves through the crust, it can pick up pieces of the surrounding rock. These pieces get trapped in the magma and become xenoliths.
Think of it like making a sandwich. Imagine you're spreading peanut butter on bread, and accidentally, some bread crumbs stick to the peanut butter. In this analogy, the bread crumbs are like the xenoliths, and the peanut butter is like the molten magma. The xenoliths are bits of the Earth's crust that got carried along by the moving magma.
Scientists study xenoliths to learn more about the Earth's interior because they can tell us what kinds of rocks are found deep beneath the surface. It's like getting a peek into the Earth's secret recipe, helping scientists understand more about our planet's history and what it's made of.
Questions (REQUIRED):
To log the cache, you must correctly answer and send the responses to the questions. Send the answers through my profile, preferably through the message center. You can log "Found It" immediately after sending the answers to the questions. Logs without sent answers and added photos will be deleted.
Every participant logs responses individually.
Railway station opening hours:
Mon-Sun: 3:00-1:00
At the initial coordinates, there are xenoliths located on the floor of the railway station building. You can observe them in the entrance hall (on the ground floor), on your way to the platforms, as well as on the stairs leading to the first floor.
1. What are xenoliths?
2. In what igneous rock are xenoliths found at the Košice Railway Station?
3. How were xenoliths formed in the structure of the Košice Railway Station?
4. How do these xenoliths differ from the igneous (host) rock (color, structure)?
5. Select any xenolith for examination. What is its shape and size?
6. Explain in your own words why this xenolith cannot be considered an autolith.
7. Add a photo from the location, yourself, your personal item, xWG, or something that identifies you.
Referencie/References:
- Reichwalder, P., Jablonský, J., 2003; Všeobecná geológia 1. Univerzita Komenského, Bratislava, 239 s.
- http://www.geology.cz prístup: 4.9.2008
- https://sk.wikipedia.org/wiki/Xenolit
- https://www.geocaching.com/geocache/GC85H9E
- https://www.geocaching.com/geocache/GC8GJHW
- Hansteen, Thor H; Troll, Valentin R (2003-02-14). "Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas". Chemical Geology. 193 (3): 181–193. Bibcode:2003ChGeo.193..181H. doi:10.1016/S0009-2541(02)00325-X. ISSN 0009-2541
- Arakawa, Yoji; Endo, Daisuke; Ikehata, Kei; Oshika, Junya; Shinmura, Taro; Mori, Yasushi (2017-03-01). "Two types of gabbroic xenoliths from rhyolite dominated Niijima volcano, northern part of Izu-Bonin arc: petrological and geochemical constraints". Open Geosciences. 9 (1): 1–12. Bibcode:2017OGeo....9....1A. doi:10.1515/geo-2017-0001. ISSN 2391-5447
- Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie (2013-07-01). "Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes". Journal of Volcanology and Geothermal Research. Merapi eruption. 261: 38–49. Bibcode:2013JVGR..261...38T. doi:10.1016/j.jvolgeores.2012.11.001. ISSN 0377-0273
- "Xenolith". Encyclopedic Entries. National Geographic Society. 2011. Retrieved 10 March 2018
- Komov, I.L.; Lukashev, A.N.; Koplus, A.V. (1994). Geochemical Methods of Prospecting for Non-Metallic Minerals. Boca Raton: CRC Press. p. 32. ISBN 978-1-4665-6457-2
- "Xenoliths in Meteorites". Science at LPI. Lunar and Planetary Institute. Retrieved 10 March 2018
- https://en.wikipedia.org/wiki/Xenolith