Skip to Content

<

Algonquin at the Sea

A cache by PitSauerland Send Message to Owner Message this owner
Hidden : 07/29/2009
Difficulty:
1.5 out of 5
Terrain:
1 out of 5

Size: Size: not chosen (not chosen)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:

Highlands of Algonquin Park. The coordinates take you to the Visitor Center of Algonquin Provincial Park.

1. A special place
Established in 1893 Algonquin was the first provincial park in Canada and the forerunner of Ontario’s extensive park system. Its unique landscape that was formed during millions of years of a colorful geological history has long attracted both artists and environmentalists. Algonquin Park is surrounded by lower areas like Lake Nipissing or the Ottawa Valley.
So how come Algonquin became an Upland with an elevation of up to 520m?
Why is there such an abundance of lakes?
Why are there so many cliffs putting their special mark to this landscape?
To find the answers and to understand the basic of this precious ecosystem we need to embark on a journey through ancient times, ice ages and through times of merging continents.



Pic 1: Topographic model of Algonquin in the Visitor Center

2. Drifted away
Understanding the drift of continents in ancient times was a major break through in the geological science. Our earth consists of different layers created by gravity meaning that the lighter materials are floating on the outer layers of our planet. The two top layers of the earth are the asthenosphere and the lithosphere. The asthenosphere consists of molten rock. The lighter lithosphere with its uppermost part the continental or oceanic crust floats on top of the asthenosphere. The crust itself is broken into curved plates that are slowly moving on the earth’s surface like huge ships on an ocean. The plates will eventually crush, one plate might be subducted and be forced into the earth or the plates can collide and pile up to form mighty mountain ranges. All these phenomena have occurred in Algonquin. 1200 million years ago the ancient continent of Nena formed the core of what today is North America. Colliding with the continent Atlantica Nena was pushed down and large parts of the crust were piled up to a high mountain range (the Grenville Mountains).
Amazing that the land we stand on today in Algonquin was still buried 25-30 kilometers deep under the highest peaks of Grenville mountains. Atlantica and Nena continued to press against each other with enormous force and finally merged to form the new super continent Rodinia (980 million years ago). The next 400 million years things remained relatively quite and controlled. The mountain slowly eroded – a mere millimeter every 10 years! But during 400 million years even the highest mountains were worn down by wind and water, ice and snow.
With the progressing erosion the weight of the high mountains slowly receded and the rocks of Algonquin ultimately rose to the earth’s surface for the first time. At the same time underneath Rodinia other forces piled up: The heat of the earth’s core that was trapped under the huge shield of Rodinia finally broke through the crust and Rodinia was split into the two new continents.
Finally Algonquin settled underneath the sea level and was flooded by the waters of Iapetus. Sediments settled on top of Algonquin and were transformed into sedimentary rocks that accumulated hundreds of meters thick.

3. Meteooooor!!!
It all happened here. 450 million years ago a gigantic meteor of 150m diameter smashed into Algonquin at 72.000 km/h. The force of the impact created the 4km wide and 600m deep Brent crater that is easily accessible from the north side of the park.
Continuous continental drift and a succession of collisions finally lifted Algonquin back up above the sea level – just in time for the arrival of the Dinosaurs 250 million years ago. However all evidence of them and all the sedimentary rocks eroded away over time – once again helping the Grenville Rocks to rise and form the highlands of Algonquin.

4. Get your mittens ready
While the general shape of the land was generated over 1500 million years by drifting continents, building mountains and erosion another event had as much of an impact on Alqonquin – the ice ages.
Ice ages describe a situation when the poles are ice covered and the ice might even extend half way to the equator. In earth history the poles have been usually free of ice – helped by the sun, the warm currents of the oceans and the global wind conditions. Sometimes however moving continents might interrupt the currents of the ocean. In those situations the snow that accumulated over the winter months won’t melt away in summer and more and more snow will build up. Pressure will turn the snow into ice and glaciers form. The snow and the ice reflect the sunbeams even more and will therefore accelerate the cooling process on earth.
A total of 4 ice ages occurred in earth history and just recently (approx 115.000 years ago until 11.000 years ago) Algonquin was covered under an up to 3 kilometer thick layer of ice. The ice, snow and the glaciers completely disrupted the drainage of water in the Algonquin Highlands. Had Algonquin formerly drained through rivers into the ocean the ice and snow blocked the water from flowing downhill. In addition the gravity made glaciers move downhill bulldozing the landscape underneath, pushing the soil away and enabling water to accumulate into the depressions in the bedrocks. This is one of the main explanations for the high number of lakes in Algonquin.

5. Algonquin at the Sea
When the glaciers started to melt they left silt, clay, sand, pebbles and rocks (the glacial tilt). Whenever the melting water of the glacier was drained in streams the heavy components of the glacial tilt sunk right to the floor while the lighter material got carried away with the river. These glacial outwash deposits are always sorted – with the heaviest material being closest to the glacier and lighter material being distributed over many kilometers along the bottom of the river. One of the large meltwater channels crossed the park starting at the Kiosk area all the way to Petewawa basin. Thousands of tons of sand settled along the steady flow of water and formed the sandy habitat of the Eastern Lowlands of Algonquin.
11.800 years ago the ice in Algonquin finally retreated and Lake Algonquin and Lake Iroquois were created to the south of the current park area.



Pic 2: Ancient Lakes

In the north the thick cover of the ice was still lingering with its weight pushing the Ottawa and St. Lawrence river valley under the sea level. With the ongoing melting of the ice Atlantic water eventually flooded these valleys and created the Champlain Sea. Alqonquin was linked to the Atlantic. Imagine – Algonquin with an ocean beach. Back then it was reality!
However this effect didn’t last long. With the ice retreating north the river valleys finally rose and the Champlain Sea disappeared.
Amazingly enough even today the land is still rising 2mm every year and gradually recovering from the burden of the ice.

6. The Algonquin habitat of today
With the glaciers gone and only unfertile glacial tilt covering the bedrocks erosion set in again. Wind, rain, sun, frost, lichens and mosses started their work to turn rocks into valuable soil.
A lengthy process. To build one inch of soil it takes up to 100 years of erosion. So please remember to stay on marked trails when you visit sensitive areas. Any damage of the spare vegetation will impact the generation of soil that is required to maintain Algonquin’s Ecosystem.
Now please step out to the viewing platform and watch the erosion proceeding. The tilted hills at the horizon were created by the weaker layers of the hills eroding faster while the more resistant forming ridges and cliffs.



Pic 3: Erosion generated Algonquin’s cliffs


In order for you to log this cache please send me an email with the following information and post the require pictures:
a. What is the name of the Sea that connected Algonquin to the Atlantic?
b. At the coordinates of the cache there are 2 ancient witnesses of Algonquin history located. Estimate their heigth and determine how many years it will take until they are completely eroded.
c. Post your log together with a pic of you and your GPS on the viewing platform
d. Post a pic of your favorite Algonquin spot, animal or plant.


For more information on the geology of Algonquin please refer to:
a. Ahern, Frank: Algonquin Park, Through Time and Space, 2006.
b. Strickland, Dan: Lookout Trail

Additional Hints (Decrypt)

o. Purpx gur pnpur qrfpevcgvba gb trg gur vasbezngvba lbh arrq gb qb gur pnyphyngvba.

Decryption Key

A|B|C|D|E|F|G|H|I|J|K|L|M
-------------------------
N|O|P|Q|R|S|T|U|V|W|X|Y|Z

(letter above equals below, and vice versa)



 

Find...

377 Logged Visits

Found it 360     Didn't find it 1     Write note 15     Publish Listing 1     

View Logbook | View the Image Gallery of 556 images

**Warning! Spoilers may be included in the descriptions or links.

Current Time:
Last Updated:
Rendered From:Unknown
Coordinates are in the WGS84 datum

Return to the Top of the Page

Reviewer notes

Use this space to describe your geocache location, container, and how it's hidden to your reviewer. If you've made changes, tell the reviewer what changes you made. The more they know, the easier it is for them to publish your geocache. This note will not be visible to the public when your geocache is published.