Skip to content

Forno Glacier EarthCache

Hidden : 7/12/2010
Difficulty:
1 out of 5
Terrain:
3 out of 5

Size: Size:   not chosen (not chosen)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:

Forno Glacier

 General site information:


The Forno Glacier (Romansh: Vadrec del Forno) is a 6 km long glacier (2005) situated in the Bregaglia Range in the canton of Graubünden in Switzerland

The glacier can be reached from Maloja in 3 hours. Distance from Maloja is 8km. On the way up you pass Cavloc lake which is in 1908 metres above see level. Down part of the glacier is approximately in 2230 metres above see level.  In 1973 it had an area of 8.72 km². There is Forno hut above the glacier. The hut s located in 2574 metres above see level. It is one of the most typical Swiss alpine hut. It provides you the glacier view and glorious scenery of Rhetic portion of the Swiss/Italian Alps

  The Glacier Forno

 
Glacier:

 A glacier is a perennial mass of ice which moves over land. A glacier forms in locations where the mass accumulation of snow and ice exceeds ablation over many years. The word glacier comes from French via the Vulgar Latin glacia, and ultimately from Latin glacies meaning ice.[1] The corresponding area of study is called glaciology.

Glacier ice is the largest reservoir of fresh water on Earth, and is second only to oceans as the largest reservoir of total water. Glaciers cover vast areas of the polar regions and are found in mountain ranges of every continent including Australasia (there are glaciers in New Zealand). In the tropics glaciers are restricted to the highest mountains. The processes and landforms caused by glaciers and related to them are referred to as glacial. The process of glacier growth and establishment is called glaciation. Glaciers are indicators of climate and are important to world water resources and sea level variation. They are an important component of the more encompassing cryosphere.

 
Types of glaciers:

 
Glaciers are categorized in many ways including by their morphology, thermal characteristics or their behavior. Two common types of glaciers are Alpine glaciers, which originate in mountains, and Continental ice sheets, which cover larger areas.

 Alpine glaciers form on mountain slopes and are also known as mountain, niche or cirque glaciers. An Alpine glacier that fills a valley is referred to as a Valley glacier. Larger glaciers that cover an entire mountain, mountain chain or volcano are known as an ice cap or ice field, such as the Juneau Icefield.[2] Ice caps feed outlet glaciers, tongues of ice that extend into valleys below far from the margins of the larger ice masses.

Ice sheets are the largest glaciers. These enormous masses of ice are not visibly affected by the landscape as they cover the entire surface beneath them, with possible exception near the glacier margins where they are thinnest. Antarctica and Greenland are the only places where Continental ice sheets currently exist. These regions contain vast quantities of fresh water. The volume of ice is so large that if the Greenland ice sheet melted, it would cause sea levels to rise six meters (20 ft) all around the world. If the Antarctic ice sheet melted, sea levels would rise up to 65 meters (210 ft).[3] Ice shelves are areas of floating ice, commonly located at the margin of an ice sheet. As a result they are thinner and have limited slopes and reduced velocities.[4] Ice streams are fast-moving sections of an ice sheet.[5]. They can be several hundred kilometers long. Ice streams have narrow margins and on either side ice flow is usually an order of magnitude less.[6] In Antarctica, many ice streams drain into large ice shelves. However, some drain directly into the sea, often with an ice tongue, like Mertz Glacier. In Greenland and Antarctica ice streams ending at the sea are often referred to as tidewater glaciers or outlet glaciers, such as Jakobshavn Isbræ (Kalaallisut: Sermeq Kujalleq).

Tidewater glaciers are glaciers that terminate in the sea. As the ice reaches the sea pieces break off, or calve, forming icebergs. Most tidewater glaciers calve above sea level, which often results in a tremendous splash as the iceberg strikes the water. If the water is deep, glaciers can calve underwater, causing the iceberg to suddenly leap up out of the water. The Hubbard Glacier is the longest tidewater glacier in Alaska and has a calving face over 10 km (6 mi) long. Yakutat Bay and Glacier Bay are both popular with cruise ship passengers because of the huge glaciers descending hundreds of feet to the water. This glacier type undergoes centuries-long cycles of advance and retreat that are much less affected by the climate changes currently causing the retreat of most other glaciers. Most tidewater glaciers are outlet glaciers of ice caps and ice fields.

In terms of thermal characteristics, a temperate glacier is at melting point throughout the year, from its surface to its base. The ice of a polar glacier is always below freezing point from the surface to its base, although the surface snowpack may experience seasonal melting. A sub-polar glacier has both temperate and polar ice, depending on the depth beneath the surface and position along the length of the glacier.

 Formation:

 Glaciers form where the accumulation of snow and ice exceeds ablation. As the snow and ice thicken, they reach a point where they begin to move, due to a combination of the surface slope and the pressure of the overlying snow and ice. On steeper slopes this can occur with as little as 50 feet of snow-ice. The snow which forms temperate glaciers is subject to repeated freezing and thawing, which changes it into a form of granular ice called firn. Under the pressure of the layers of ice and snow above it, this granular ice fuses into denser and denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice has a slightly reduced density from ice formed from the direct freezing of water. The air between snowflakes becomes trapped and creates air bubbles between the ice crystals.

The distinctive blue tint of glacial ice is often wrongly attributed to Rayleigh scattering due to bubbles in the ice. The blue color is actually created for the same reason that water is blue, that is, its slight absorption of red light due to an overtone of the infrared OH stretching mode of the water molecule.[7]

 Anatomy:

 The location where a glacier originates is referred to as the "glacier head". A glacier terminates at the "glacier foot", or terminus. Glaciers are broken into zones based on surface snowpack and melt conditions. The ablation zone is the region where there is a net loss in glacier mass. The equilibrium line separates the ablation zone and the accumulation zone. At this altitude, the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. The accumulation zone is the region where snowpack or superimposed ice accumulation persists.

A further zonation of the accumulation zone distinguishes the melt conditions that exist.

The dry snow zone is a region where no melt occurs, even in the summer, and the snowpack remains dry.

The percolation zone is an area with some surface melt, causing meltwater to percolate into the snowpack. This zone is often marked by refrozen ice lenses, glands, and layers. The snowpack also never reaches melting point.

Near the equilibrium line on some glaciers, a superimposed ice zone develops. This zone is where meltwater refreezes as a cold layer in the glacier, forming a continuous mass of ice.

The wet snow zone is the region where all of the snow deposited since the end of the previous summer has been raised to 0°C.

The upper part of a glacier that receives most of the snowfall is called the accumulation zone. In general, the glacier accumulation zone accounts for 60-70% of the glacier's surface area, more if the glacier calves icebergs. The depth of ice in the accumulation zone exerts a downward force sufficient to cause deep erosion of the rock in this area. After the glacier is gone, its force often leaves a bowl or amphitheater-shaped isostatic depression ranging from large lake basins, such as the Great Lakes or Finger Lakes, to smaller mountain basins, known as cirques.

The "health" of a glacier is usually assessed by determining the glacier mass balance or observing terminus behavior. Healthy glaciers have large accumulation zones, more than 60% of their area snowcovered at the end of the melt season, and a terminus with vigorous flow.

Following the Little Ice Age, around 1850, the glaciers of the Earth have retreated substantially through the 1940s (see Retreat of glaciers since 1850). A slight cooling led to the advance of many alpine glaciers from 1950-1985. However, since 1985 glacier retreat and mass balance loss has become increasingly ubiquitous and large.[9][10][11]

 Motion:

 Glaciers move, or flow, downhill due to the internal deformation of ice and gravity.[12] Ice behaves like an easily breaking solid until its thickness exceeds about 50 meters (160 ft). The pressure on ice deeper than that depth causes plastic flow. At the molecular level, ice consists of stacked layers of molecules with relatively weak bonds between the layers. When the stress of the layer above exceeds the inter-layer binding strength, it moves faster than the layer below.[13]

Another type of movement is through basal sliding. In this process, the glacier slides over the terrain on which it sits, lubricated by the presence of liquid water. As the pressure increases toward the base of the glacier, the melting point of water decreases, and the ice melts. Friction between ice and rock and geothermal heat from the Earth's interior also contribute to melting. This type of movement is dominant in temperate, or warm-based glaciers. The geothermal heat flux becomes more important the thicker a glacier becomes. The rate of movement is dependent on the underlying slope, amongst many other factors

 Geography:

 Glaciers occur on every continent and approximately 47 countries. Extensive glaciers are found in Antarctica, Chilean Patagonia, Canada, Alaska, Greenland and Iceland. Mountain glaciers are widespread, e.g., in the Andes, the Himalaya, the Rocky Mountains, the Caucasus, and the Alps. On mainland Australia no glaciers exist today, although a small glacier on Mount Kosciuszko was present in the last glacial period, and Tasmania was extensively glaciated.[24] The South Island of New Zealand has many glaciers including Tasman, Fox and Franz Josef Glaciers. In New Guinea, small, rapidly diminishing, glaciers are located on its highest summit massif of Puncak Jaya.[25] Africa has glaciers on Mount Kilimanjaro in Tanzania, on Mount Kenya and in the Ruwenzori Range.

Permanent snow cover is affected by factors such as the degree of slope on the land, amount of snowfall and the winds. As temperature decreases with altitude, high mountains — even those near the Equator — have permanent snow cover on their upper portions, above the snow line. Examples include Mount Kilimanjaro and the Tropical Andes in South America; however, the only snow to occur exactly on the Equator is at 4,690 m (15,387 ft) on the southern slope of Volcán Cayambe in Ecuador.

Conversely, areas of the Arctic, such as Banks Island, and the Dry Valleys in Antarctica are considered polar deserts, as they receive little snowfall despite the bitter cold. Cold air, unlike warm air, is unable to transport much water vapor. Even during glacial periods of the Quaternary, Manchuria, lowland Siberia[26], and central and northern Alaska[27], though extraordinarily cold with winter temperatures believed to reach −100 °C (−148.0 °F) in parts[28], had such light snowfall that glaciers could not form[29][30].

In addition to the dry, unglaciated polar regions, some mountains and volcanoes in Bolivia, Chile and Argentina are high (4,500 metres (14,800 ft) - 6,900 m (22,600 ft)) and cold, but the relative lack of precipitation prevents snow from accumulating into glaciers. This is because these peaks are located near or in the hyperarid Atacama desert.

 Glacial geology:

Glacial geology

 

Rocks and sediments are added to glaciers through various processes. Glaciers erode the terrain principally through two methods: abrasion and plucking.

As the glacier flows over the bedrock's fractured surface, it softens and lifts blocks of rock that are brought into the ice. This process is known as plucking, and it is produced when subglacial water penetrates the fractures and the subsequent freezing expansion separates them from the bedrock. When the ice expands, it acts as a lever that loosens the rock by lifting it. This way, sediments of all sizes become part of the glacier's load. The rocks frozen into the bottom of the ice then act like grit in sandpaper.

Abrasion occurs when the ice and the load of rock fragments slide over the bedrock and function as sandpaper that smooths and polishes the surface situated below. This pulverized rock is called rock flour. The flour is formed by rock grains of a size between 0.002 and 0.00625 mm. Sometimes the amount of rock flour produced is so high that currents of meltwaters acquire a grayish color. These processes of erosion lead to steeper valley walls and mountain slopes in alpine settings, which can cause avalanches and rock slides. These further add material to the glacier.

 
Visible characteristics of glacial abrasion are glacial striations. These are produced when the bottom's ice contains large chunks of rock that mark scratches in the bedrock. By mapping the direction of the flutes, researchers can determine the direction of the glacier's movement. Chatter marks are seen as lines of roughly crescent-shape depressions in the rock underlying a glacier, caused by the abrasion where a boulder in the ice catches and is then released repetitively as the glacier drags it over the underlying basal rock.

The rate of glacier erosion is variable. The differential erosion undertaken by the ice is controlled by six important factors:

1)Velocity of glacial movement;

2)Thickness of the ice;

3)Shape, abundance and hardness of rock fragments contained in the ice at the bottom of the glacier;

4)Relative ease of erosion of the surface under the glacier;

5)Thermal conditions at the glacier base; and

6)Permeability and water pressure at the glacier base.

 Material that becomes incorporated in a glacier are typically carried as far as the zone of ablation before being deposited. Glacial deposits are of two distinct types:

Glacial till: material directly deposited from glacial ice. Till includes a mixture of undifferentiated material ranging from clay size to boulders, the usual composition of a moraine.

Fluvial and outwash: sediments deposited by water. These deposits are stratified through various processes, such as boulders' being separated from finer particles.

The larger pieces of rock which are encrusted in till or deposited on the surface are called "glacial erratics". They may range in size from pebbles to boulders, but as they may be moved great distances, they may be of drastically different type than the material upon which they are found. Patterns of glacial erratics provide clues of past glacial motions.

Source: free encyclopedia and other educational materials

Given coordinates will lead you near of the glacier. To log this Earthcache, you have to:     

1. take a picture of youself and your's GPS showing the glacier in the background. IT IS OPTIONAL

2. determine the current position of the ice front and note these coordinates in your log. Try to guess how wide is the glacier


Additional Hints (Decrypt)

AN

Decryption Key

A|B|C|D|E|F|G|H|I|J|K|L|M
-------------------------
N|O|P|Q|R|S|T|U|V|W|X|Y|Z

(letter above equals below, and vice versa)