Skip to content

Hadron Traditional Cache

Hidden : 7/2/2011
Difficulty:
2 out of 5
Terrain:
2 out of 5

Size: Size:   small (small)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:

This cache is one of six in the Particle Series. Each cache is a stand-alone cache. These caches are inspired by on-going research at CERN labs in Switzerland.

CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.




Examples of Hadrons


In particle physics, a hadron is a composite particle made of quarks held together by the strong force (as atoms and molecules are held together by the electromagnetic force). Hadrons are categorized into two families: baryons (made of three quarks) and mesons (made of one quark and one antiquark).
The best-known hadrons are protons and neutrons (both baryons),which are components of atomic nuclei. All hadrons except protons are unstable and undergo particle decay–however neutrons are stable inside atomic nuclei. The best-known mesons are the pion and the kaon, which were discovered during cosmic ray experiments in the late 1940s and early 1950s. However these are not the only hadrons; a great number of them have been discovered and continue to be discovered.

Hadrons are defined as strongly interacting composite particles. Hadrons are either:

• Composite fermions, in which case they are called baryons.

• Composite bosons, in which case they are called mesons.

Quark models, first proposed in 1964 independently by Murray Gell-Mann and George Zweig (who called quarks "aces"), describe the known hadrons as composed of valence quarks and/or antiquarks, tightly bound by the color force, which is mediated by gluons. A "sea" of virtual quark-antiquark pairs is also present in each hadron.

Additional Hints (No hints available.)