Skip to content

Please, No Erratic Spitting EarthCache

Hidden : 2/26/2015
Difficulty:
2.5 out of 5
Terrain:
1 out of 5

Size: Size:   other (other)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:

My first earthcache placement to celebrate my 50th earthcache find. A nice straight forward earthcache on the earthcachers bread and butter......... The Erratic.The Compstall Touchstone sits in the old market place, shepherds would meet at the Touchstone and strike deals by spitting on their palms and slapping the stone to seal the deal.

A glacial erratic is a piece of rock that differs from the size and type of rock native to the area in which it rests. "Erratics" take their name from the Latin word errare, and are carried by glacial ice, often over distances of hundreds of kilometres. Erratics can range in size from pebbles to large boulders.

Geologists identify erratics by studying the rocks surrounding the position of the erratic and the composition of the erratic itself. Erratics are significant because:

  • Since they are transported by glaciers, they are one of a series of indicators which mark the path of prehistoric glacier movement. Their lithographic origin can be traced to the parent bedrock, allowing for confirmation of the ice flow route.
  • They can be transported by ice-rafting. This allows quantification of the extent of glacial flooding resulting from ice dam failure which release the waters stored in proglacial lakes such as Lake Missoula. Erratics released by ice-rafts that were stranded and subsequently melt, dropping their load, allow characterization of the high-water marks for transient floods in areas like temporary Lake Lewis.
  • Erratics dropped by icebergs melting in the ocean can be used to track Antarctic and Arctic-region glacial movements for periods prior to record retention. Also known as dropstones, these can be correlated with ocean temperatures and levels to better understand and calibrate models of the global climate.

Glacier-Borne Erratic

Erratics provide an important tool in characterizing the directions of glacier flows, which are routinely reconstructed used on a combination of moraines, eskers, drumlins, meltwater channels, and similar data. Erratic distributions and glacial till properties allow for identification of the source rock from which they derive, which confirms the flow direction, particularly when the erratic source outcrop is unique to a limited locality. Erratic materials may be transported by multiple glacier flows prior to their deposition, which can complicate the reconstruction of the glacial flow.

Ice-Rafted Erratic

Glacial ice entrains debris of varying sizes from small particles to extremely large masses of rock. This debris is transported to the coast by glacier ice and released during the production, drift and melting of icebergs. The rate of debris release by ice depends upon the size of the ice mass in which it is carried as well as the temperature of the ocean through which the ice floe passes.

Sediments from the late Pleistocene period lying on the floor of the North Atlantic show a series of layers (referred to at Heinrich layers) which contain ice-rafted debris. They were formed between 14,000 & 70,000 years before the present. The deposited debris can be traced back to the origin by both the nature of the materials released and the continuous path of debris release. Some paths extend more than 3,000 kilometres (1,900 mi) distant from the point at which the ice floes originally broke free.

The location and altitude of ice-rafted boulders relative to the modern landscape has been used to identify the highest level of water in proglacial lakes. Ice-rafted debris is deposited when the iceberg strands on the shore and subsequently melts, or drops out of the ice floe as it melts. Hence all erratic deposits are deposited below the actual high water level of the lake; however the measured altitude of ice-rafted debris can be used to estimate the lake surface elevation.

This is accomplished by recognizing that on a fresh-water lake, the iceberg floats until the volume of its ice-rafted debris exceeds 5% of the volume of the iceberg. Therefore, a correlation between the iceberg size and the boulder size can be established. For example 1.5-metre (4.9 ft) diameter boulder can be carried by a 3-metre (9.8 ft) high iceberg and could be found stranded at higher elevations than a 2-metre (6.6 ft) boulder which requires a 4-metre (13 ft) high iceberg.

Examples Of Erratics.
Logging Requirements 1. Name the type of rock the Touchstone is, and into which category of rock it belongs to (Igneous,Sedimentory or Metamorphic) 2. Is the Touchstone Angular or Smooth? Explain How/Why 3. Describe the colour and overall shape of the Erratic 4. Measure the height,width and depth of the erratic and use your measurements to calculate its Volume. 5. Use your answers from questions 1 & 4 to calculate the Erratics mass. Optional Take a photo of yourself at GZ and upload it with your log. Feel free to log your find before sending me the answers, any logs without answers being sent within a reasonable time frame will be deleted.

Additional Hints (No hints available.)