Skip to content

Limestone's of Rijeka EarthCache

Hidden : 11/20/2015
Difficulty:
3 out of 5
Terrain:
1.5 out of 5

Size: Size:   other (other)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:




Etapa 1 – Stendardac i Palača Municipija

Palača Municipija, sa svoja tri pročelja dominira Trgom Riječke rezolucije. Rijeka je 15. lipnja 1872. dobila novi statut, po kojemu je općinom upravljalo zastupništvo od 56 članova s podestatom (gradonačelnikom) na čelu. Nametnula se potreba za izgradnjom nove Vijećnice i suvremene gradske kuće. Općina je od 1833. preselila u zgradu obnovljenog Augustinskog samostana. Novi gradonačelnik Ivan Ciotta 1873. nastoji riješiti problem sjedišta municipalne uprave. Taj zadatak preuzima mladi arhitekt dr. Filibert Bazaring, koji je u duhu klasicističke struje u Venetu, gdje se školovao, nadahnuto povezao pitomu baroknu arhitekturu Crkve sv. Jerolima i klasicističko začelje sadašnje zgrade Radio - Rijeke u divan sklad. U Rijeci se od srednjeg vijeka vodi grčevita borba za gradsku autonomiju.

Te činjenice su bili svjesni i njeni feudalni gospodari. Najvidljivije o tome svjedoči Stendardac, kameni stup za gradsku zastavu pred zgradom Municipija, na kojem je posebnom pravnom formulom 1508. car Maksimilijan zagarantirao slobode i privilegije što ih je grad dobio od prethodnih gospodara, grofova Devinskih i Walsee. Izlazak Habsburgovaca na more izazvao je 1508. sukob s Mletačkom Republikom, u kojem je Rijeka 2. X. 1509. spaljena, opljačkana i poharana. Kao uspomena na osobitu vjernost Rijeke caru, te na 1508. godinu, podignut je stup s reljefnim prikazom sv. Vida, patrona Rijeke, koji drži model grada u ruci, dok je na drugoj strani stupa uklesan tekst garancije. Taj je stup značajno svjedočanstvo političko-pravne povijesti Rijeke. Za vrijeme praznika na stupu se vijori gradska zastava.



Etapa 2 – Katedrala sv. Vida

Crkva sv. Vida, isusovačka rotonda (sada Katedrala) sagrađena na mjestu srušene crkvice posvećene zaštitniku Rijeke, sv. Vidu. Gotov projekt za gradnju, koja je počela 15. lipnja 1638., donijeli su isusovci. Gradnja je s prekidima trajala stotinu godina. Kupolu i oratorije za redovnike na prvom katu izgradio je gotički arhitekt Bernardin Martnuzzi 1727. godine. Crkva sv. Vida građena je sredstvima legata grofice Ursule Thanhausen i od prihoda Kastavske gospoštije koja je bila infeudirana riječkom kolegiju

U unutrašnjosti crkve sv. Vida dominiraju moćni stupovi što podupiru lukove kapela u kojima su smješteni višebojni mramorni oltari. Oltare su radili poznati barokni oltaristi Leonardo Pacassi, Pasquale Lazzarini i Antonio Michelazzi, u razdoblju između 1696. i 1740. godine, a propovjedaonicu, zrelo djelo barokne umjetnosti, izradio je 1731. Antonio Michelazzi. Glavni oltar na kojem je izloženo (nedavno restaurirano) reinsko - gotičko Raspeće iz 13. st. izradio je 1711. gotički oltarist i kipar Pasquale Lazzarini. Sa strana oltara su kipovi sv. Vida i sv. Modesta. Uz izloženo Raspeće vezuje se legenda prema kojoj je 1296. neki Petar Lončarić u ljutnji zamahnuo kamenom i udario Kristovo tijelo na Raspeću, koje je stajalo u trijemu pred starom crkvom sv. Vida. Iz tijela Kristova "kao iz živog mesa" potekla je krv, koja je sačuvana u ampuli. Od tada se u Rijeci stvorio kult "čudotvornog Raspeća", koji su isusovci pojačali kao protutežu kultu Gospe Trsatske. Izgled crkve se od 18.st. nije bitno mijenjao, iako je bilo nekoliko obnova. Do crkve je 1727. podignut nizak zvonik, preko čijega se prvog kata komuniciralo sa zgradom Kolegija. Nakon što je srušen Kolegij, ulazni portal je ukomponiran u novu zgradu kanonike, a arhitekt Bruno Angheben 1933. duhovito je zatvorio istočno pročelje zvonika.



Finalna lokacija - Guvernerova palača

Gradnja Guvernerove palače započela je 1892. u vrijeme guvernera Lajosa Batthyánya, a prema projektu jednog od vodećih mađarskih arhitekata Alajosa Hauszmanna, već potvrđenog na projektu Kraljevske palače i zgrade Parlamenta u Budimpešti. Sred površine od 12000 m² uzdiže se jednostavan i monumentalan korpus slobodnostojeće neorenesansne palače po uzoru na slavna Palladijeva djela, francuski park s dvije fontane i ogradom od kovanog željeza te dvokrilnim ulaznim vratima sa stražarnicama.

U palači je danas smješten Pomorski i povijesni muzej Hrvatskog primorja, osnovan 1961. godine koji sadrži pomorski, kulturno-povijesni, etnografski i arheološki odjel. Od izvorne opreme Guvernerove palače sačuvan je i prezentiran dio građe u salonima, uključujući namještaj i predmete umjetničkog obrta, koji stilski pokrivaju razdoblje od renesanse do historicizma, te zbirku portreta najuglednijih građana Rijeke.



Što je vapnenac?

Vapnenac je sedimentna stijena sastavljena uglavnom od kalcijevog karbonata (CaCO3) u obliku mineralnog kalcita. Vapnenačke forme najbolje su vidljive i prepoznatljive u toplim, plitkim morskim vodama. Vapnenac je obično biološka (organska) sedimentna stijena nastala taloženjem školjaka, koralja, algi i fekalnih ostataka.

Također, može biti i kemijski (anorganski) formirana sedimentna stijena nastala taloženjem kalcijevog karbonata iz jezera, mora ili oceana.

Nastajanje vapnenca - marinski

Većina vapnenaca nastaje u plitkim, mirnim i toplim morskim vodama. U morskom okruženju lako dolazi do izvlačenja kalcijevog karbonata iz školjaka i kostura potrebnih za formiranje vapnenca. Nakon što morski organizmi izumru njihove oklopne i skeletne krhotine talože se kao sediment koji se pretvara u vapnenac. Njihovi otpadni proizvodi (kakica) također mogu doprinijeti taloženju. Vapnenci nastali na ovakav način nazivaju se biološkim sedimentnim stijenama. Njihovo biološko podrijetlo otkrivamo prisutnošću fosila u stijeni.

Neki vapnenci mogu nastati izravnim taloženjem kalcijeva karbonata iz morske ili slatke vode. Vapnence nastale na ovaj način nazivamo kemijskim sedimentnim stijenama. Po svojoj strukturi manje su obilni od biološkim vapnenaca.

Danas je na Zemlji puno vapnenačko oblikovanih okruženja. Većina ih se nalazi u pličinama između 30 stupnjeva sjeverne geografske širine i 30 stupnjeva južne geografske širine.

Nastajanje vapnenca - isparavanjem

Vapnenac može nastati i isparavanjem. Stalaktiti, stalagmiti i ostali spiljski oblici takvi su primjeri vapnenca. U pećini, kapljice vode cure odozgo kroz pukotine ili pore i dolaze do spiljskih stropova. Prije pada na pod spilje može doći do isparavanja. Kako voda isparava tako se kalcijev karbonat taloži na stropu spilje. Tijekom vremena proces isparavanja može rezultirati nastankom vrhova kalcijeva karbonata na stropu spilje. Takve naslage počinju tvoriti stalaktite. Moguć je i obrnuti proces kada se isparavanje događa na tlu spilje što omogućava nastanak stalagmita.

Vapnenac koji tako tvori spiljske oblike poznat je i kao „sedra“ te pripada kemijskim sedimentnim stijenama. Stijena poznata kao „tuf“ vapnenac je nastao isparavanjem vrućih izvora, obala jezera ili sličnih područja.

Sastav vapnenca

Vapnenac je po definiciji kamen koji sadrži najmanje 50% kalcijevog karbonata u obliku kalcitne mase. Svi vapnenci sadržavaju barem nekoliko postotaka drugih materijala. To mogu biti maleni udjeli kvarca, feldspata, gline, pirita, siderita i ostalih materijala. Također mogu sadržavati veće komade rožnjaka, pirita ili siderita.

Prisustvo kalcijevog karbonata u vapnencu daje mogućnost lake identifikacije stijene, koja se izložena hladnoj otopini 5%-tne solne kiseline – zapjeni.

Vrste vapnenca

Postoji puno naziva koji se koriste za vapnenac. Ti se nazivi temelje na tome kako je stijena nastala, njezinom izgledu, sastavu i ostalim čimbenicima. Slijedi nekoliko najčešćih naziva:

Kreda: meki vapnenac s vrlo finom teksturom obično bijele ili svijetlo sive boje. Uglavnom nastaje od vapnenačkih ostataka ljusaka mikroskopskih morskih organizama, npr. foraminifera ili vapnenačkih ostataka mnogobrojnih vrsta morskih algi.

Kokvina: Slabo-zacementiran (povezan) vapnenac koji je uglavnom nastao od krhotina slomljenih ljusaka.

Fosilizirani vapnenac: kao što mu naziv govori sadrži obilje fosila. Najčešće se radi o školjkama i kostima organizama koji tvore vapnenac.

Litografski vapnenac: gusti vapnenac s vrlo finim i vrlo ujednačenim veličinama zrna koji se pojavljuje u tankim naslagama koje se mogu lagano raslojavati u vrlo glatku površinu. Krajem 18. stoljeća razvijena je litografija. Litografija je postupak nastanaka likovnog djela u kojoj se po vapnenačkoj ploči crta masnom kredom ili litografskim tušem, pri čemu se stvara vapneni sapun. Zatim se ploča prekrije dušičnom kiselinom pomiješanom s arapskom gumom rastopljenoj u vodi. Vapneni sapun odbija zakiseljenu otopinu te su tako njenom djelovanju izloženi samo neiscrtani dijelovi kamena. Nakon toga se kamen ovlaži vodom i prijeđe valjkom premazanim tiskarskom bojom. Vlažna čista površina ne prima masnu boju, prima je jedino crtež (vapneni sapun) koji nije upio vodu. Litografija je omogućila vrlo laganu proizvodnju kopija te je postala jako raširena.

Oolitski vapnenac: sastavljen uglavnom od kalcijevog karbonata "oolites", male sfere nastale koncentričnim taloženjem kalcijevog karbonata na pješčanom zrnu ili ostatku školjke.

Sedra: vapnenac nastao isparavanjem oborina, najčešće u spiljama, nastaju spiljski oblici poput stalaktita ili stalagmita.

Tuf: vapnenac nastao taloženjem voda bogatih kalcijem iz vrućih izvora, obala jezera ili sličnih mjesta.

Fosili

Na lokacijama EarthCacheva, pronaći ćete ne samo lijep primjer sedimentne stijene vapnenca, već i poneki primjer fosila. Što su uopće fosili? Oni su sve ono sto dokazuje život u prošlim vremenima. Taj se dokaz prošlog života javlja u dva oblika. On može biti izravan ili neizravan.

Izravan dokaz života su fosili koje čine čvrsti dijelovi organizama. U slučaju životinja, to mogu biti fosilizirane kosti ili školjke. Ili, kada su u pitanju biljke, to može biti fosilizirano drvo ili lišće. U nekim slučajevima, fosiliziran može biti i cijeli organizam, i njegovi meki i njegovi čvrsti dijelovi. Primjeri takvih fosila su insekti zarobljeni u jantaru ili mamuti smrznuti u ledu.

Neizravan dokaz života su fosilni tragovi. To su različiti otisci stopala, repova, tragova, koje su organizmi ostavljali, a zatim su fosilizirani. Koproliti (fosilizirana kakica) su također jedan primjer fosilnih tragova.

Klasifikacija

Dva su velika klasifikacijska sustava kojima se služimo prilikom identifikacije i klasifikacije vapnenačkih i karbonatnih stijena: Folkov i Dunhamov.

Folkova klasifikacija

Robert L. Folk razvio je klasifikacijski sustav koji u prvi plan stavlja detaljnu strukturu zrna i naglašava primarnu detaljnost sastava zrna i ostalih materijala u karbonatnim stijenama. Razlikuje tri vrste sastojaka: alokeme (zrna), matriks (uglavnom mikrit) i cement (sparit). Folkov sustav koristi dvodijelne nazive: prvi dio se odnosi na dominantnost zrna, a drugi na prevladavajuće vezivo (mikrit ili sparit). Prilikom korištenja Folkovog sustava preporuča se koristiti petrografov mikroskop jer je lakše odrediti prisutne komponente u svakom uzorku.


Dunhamova klasifikacija

Dunhamova klasifikacija temelji se na strukturnim značajkama. Svako ime temelji se na teksturi zrna koje čini vapnenac. Dunham je 1962. godine objavio svoj sustav klasifikacije koji dijeli stijene u četiri glavne skupine temeljem relativnih proporcija grubljih klastičnih čestica. Dunhanovi nazivi osnova su za određivanje stijena.

Bavio se pitanjem jesu li ili nisu izvorna zrna u međusobnom kontaktu, podržavaju li se međusobno ili su karakteristična vidljiva razgraničenja. Za razliku od Folka, Dunham se bavio poroznošću stijena. Dunhamova klasifikacija je korisnija i kvalitetnija jer se temelji na teksturi, a ne na ispitivanju zrna u uzorku.



Da biste prijavili pronalazak potrebno je odgovoriti na sljedeća pitanja:

1. Opišite teksturu i boju vapnenca na Katedrali!

2. Jesu li ovi vapnenci biološki ili kemijski vapnenci? Objasnite?

3. Pretražite EC lokacije i pronađite barem jedan fosil. Je li taj fosil direktan ili indirektan dokaz o prošlom životu? (objasnite)

4. Objasnite kako se vapnenac može „zapjeniti“!

5. Na kojim su geografskim širinama nalazi najviše vapnenačko oblikovanih okruženja?

6. Zašto je Dunhamova metoda klasifikacije bolja od Folkove?

7. Priložite sliku s GPS-om (nije obvezno)

Pošaljite odgovore e-poštom (putem GC profila). Slobodno upišite pronalazak, a ako nešto nije u redu, obavijestit ću vas!





Stage 1 – Stendardac and Municipal palace



The Municipal palace, dominates the Square with its three facades. On June 15, 1872, Rijeka was given a new statute, by which the municipality was governed by a body of 56 representatives, headed by the mayor. This imposed the need for a new Town Hall and modern city houses. In 1833 the municipal administration, leaving the old "Rački Commune" building, relocated in the renovated building of the Augustinian monastery. A number of ill planned adaptations caused the edifice to lose its original appearance. In 1873, Ivan Ciotta, the new mayor, strove to solve the issue of the seat of the municipal administration. The commission was awarded to a young architect, Dr. Filibert Bazaring, educated in Veneto. In the spirit of classicism, he redesigned the three facades of the palace, creating a striking harmony with the serene Baroque architecture of the Church of St. Jerome and classicist back of the Radio - Rijeka building. The small square was given the appearance of a courtyard of a stately residence. Basing his design on Renaissance forms, shallow vertical pilasters, rhythmic alternations of triangular and segmented lintels and a prominent horizontal wreath under the attic, F. Bazaring created the moderate image of a town house. It became the arena of the political struggle of the Rijeka autonomists for the preservation of the municipal rights threatened by the Hungarian administration.

Fierce struggles for the town autonomy had been waged in Rijeka since the Middle Ages. The town's feudal lords were well aware of this fact, to which the stone column in front of the Municipal building bears witness. The Stendardac, a stone column for the town flag, bears an inscription by which, in 1508, the Emperor Maximillian guaranteed the rights and privileges bestowed upon the town by its previous lord, the counts of Devin and Walsee.

The access of the Habsburgs to the Adriatic Sea was the cause of a conflict with the Venetian Republic in 1508, which resulted in the burning and looting of Rijeka on Oct. 2, 1508. In memory of the town's loyalty to the emperor, a column was erected with a relief of St. Vito, the patron saint of Rijeka, holding a model of the town in his hand. The text of the guarantee was carved into the other side of the column. This column bears witness to the political and legal past of Rijeka. On holidays the town flag is raised on the mast of the stone column. A special note is given to the Square by the facade of the Church of St. Jerome, the history of which is interwoven with the history of the Augustinian monastery. The "old cloister" of the Church flanks the eastern facade of the Municipal Palace.



Stage 2 - The Church of St. Vito



The Church of St. Vito, a Jesuit rotunda (today a cathedral) was built on the site of a small demolished church, dedicated to the guardian saint of Rijeka, St. Vito (thus the name of the town Rijeka of St. Vito). It was the Jesuits who provided the complete project for the construction of the church which began on June 15, 1638 and which lasted, with interruptions for about one hundred years. The dome and the oratories for the monks on the first floor were constructed by the Gothic architect Bernardin Martnuzzi in 1727. The edifice has several similarities with the Venetian church Sta Maria della Salute. The Church of St. Vito was built with the funds of the legacy of the Countess Ursula Thanhausen and the income of Kastav manorial estate.

The interior of the church is dominated by mighty columns supporting the chapel arches which house the multicolored marble altars. The altars are the work of renowned Baroque altar craftsmen Leonardo Pacassi, Pasquale Lazzarini and Antonio Michelazzi in the period from 1696 to 1740. The pulpit, a work of mature Baroque art, was made by Antonio Michelazzi in 1731. The main altar, displaying the recently reconstructed 13th century. Gothic Crucifix, was made by the Gothic altar craftsman and sculptor Pasquale Lazzarini. The statues of St. Vito and St. Modesto flank the altar. There is a legend connected to the Crucifix, telling that, in 1296 a certain Petar Lončarić threw a rock in anger and struck the body of Christ on the cross which stood in the doorway of the old church of St. Vito. Blood flew from the body of Christ "as if from living flesh" and was preserved in a vial. From that time a cult of the "miraculous Crucifix" formed in Rijeka and was supported by the Jesuits as a counter-balance to the cult of Our Lady of Trsat. A low bell-tower was constructed next to the church in 1727. The building of the Collegium could be entered from the first floor of the bell-tower. After the Collegium was pulled down, the portal was incorporated into the new building of the canon, while in 1933 the architect, Bruno Angheben, cleverly sealed the east facade of the bell-tower.



Final location - Governor’s Palace



The construction of the Governor’s Palace began in 1892 at the time of the Governor Lajos Batthyány and based on the design of one of the leading Hungarian architects of the time, Alajos Hauszmann, who had already proved himself on the project of the King's Palace and the Parliament building in Budapest. On a surface area of 12,000 m², the simple and monumental corpus of the detached neo-Renaissance palace was built based on models of the famous Palladi's works, a French park with two fountains and balustrades made of wrought iron and a two-leaf door with sentry boxes.

Today it houses the Maritime and Historical Museum of the Croatian Littoral founded in 1961, which contains a maritime, cultural and historical, ethnographic and archaeological department. Some of the original pieces from the Governor’s palace have been preserved and presented in the salons, including furniture and art objects belonging to the periods from Renaissance to Historicism, as well as a collection of portraits of the most prominent citizens of Rijeka.




What is Limestone?

Limestone is a sedimentary rock composed primarily of calcium carbonate (CaCO3) in the form of the mineral calcite. It most commonly forms in clear, warm, shallow marine waters. It is usually an organic sedimentary rock that forms from the accumulation of shell, coral, algal and fecal debris. It can also be a chemical sedimentary rock formed by the precipitation of calcium carbonate from lake or ocean water.

Limestone-Forming Environment - Marine

Most limestones form in shallow, calm, warm marine waters. That type of environment is where organisms capable of forming calcium carbonate shells and skeletons can easily extract the needed ingredients from ocean water. When these animals die their shell and skeletal debris accumulate as sediment that might be lithified into limestone. Their waste products can also contribute to the sediment mass. Limestones formed from this type of sediment are biological sedimentary rocks. Their biological origin is often revealed in the rock by the presence of fossils.

Some limestones can form by direct precipitation of calcium carbonate from marine or fresh water. Limestones formed this way are chemical sedimentary rocks. They are thought to be less abundant than biological limestones.

Today Earth has many limestone-forming environments. Most of them are found in shallow water areas between 30 degrees north latitude and 30 degrees south latitude.

Limestone-Forming Environment - Evaporative

Limestone can also form through evaporation. Stalactites, stalagmites and other cave formations (often called "speleothems") are examples of limestone that formed through evaporation. In a cave, droplets of water seeping down from above enter the cave through fractures or other pore spaces in the cave ceiling. There they might evaporate before falling to the cave floor. When the water evaporates, any calcium carbonate that was dissolved in the water will be deposited on the cave ceiling. Over time this evaporative process can result in an accumulation of icicle-shaped calcium carbonate on the cave ceiling. These deposits are known as stalactites. If the droplet falls to the floor and evaporates there a stalagmite could grow upwards from the cave floor.

The limestone that makes up these cave formations is known as "travertine" and is a chemical sedimentary rock. A rock known as "tufa" is a limestone formed by evaporation at a hot spring, lake shore, or other area.

Composition of Limestone

Limestone is by definition a rock that contains at least 50% calcium carbonate in the form of calcite by weight. All limestones contain at least a few percent other materials. These can be small particles of quartz, feldspar, clay minerals, pyrite, siderite and other minerals. It can also contain large nodules of chert, pyrite or siderite.

The calcium carbonate content of limestone gives it a property that is often used in rock identification - it effervesces in contact with a cold solution of 5% hydrochloric acid.

Varieties of Limestone

There are many different names used for limestone. These names are based upon how the rock formed its appearance or its composition and other factors. Here are some of the more commonly used.

Chalk: A soft limestone with a very fine texture that is usually white or light gray in color. It is formed mainly from the calcareous shell remains of microscopic marine organisms such as foraminifers or the calcareous remains from numerous types of marine algae.

Coquina: A poorly-cemented limestone that is composed mainly of broken shell debris. It often forms on beaches where wave action segregates shell fragments of similar size.

Fossiliferous Limestone: A limestone that contains obvious and abundant fossils. These are normally shell and skeletal fossils of the organisms that produced the limestone.

Lithographic Limestone: A dense limestone with a very fine and very uniform grain size that occurs in thin beds that separate easily to form a very smooth surface. In the late 1700's a printing process (lithography) was developed to reproduce images by drawing them on the stone with an oil-based ink and then using that stone to press multiple copies of the image.

Oolitic Limestone: A limestone composed mainly of calcium carbonate "oolites", small spheres formed by the concentric precipitation of calcium carbonate on a sand grain or shell fragment.

Travertine: A limestone that forms by evaporative precipitation, often in a cave, to produce formations such as stalactites, stalagmites and flowstone.

Tufa: A limestone produced by precipitation of calcium-laden waters at a hot spring, lake shore or other location.

Fossils

On EarthCache location, you can find not only nice example of sedimentary rock limestone, but also nice examples of fossils. What are fossils, anyway? Well, they are anything that provides evidence of life in past ages. That evidence of life in past ages can come in two types. It can be either direct evidence or indirect evidence of past life.

Direct evidence of life are fossils of hard body parts of organisms. They can be fossilized bones or shells in case of animals. Or it can be fossilized wood or leaves in case of plants. In some cases, the entire organism can be fossilized, together with both soft and hard parts. Example of such fossils are insects trapped in amber or mammoths frozen in ice.

Indirect evidence of life are trace fossils. They are various footprints, trails, marks that were left by organisms and then fossilized. Coprolites (fossilized poo) is also one example of trace fossils.

Classification

Two major classification schemes, the Folk and the Dunham, are used for identifying limestone and carbonate rocks.

Folk classification

Robert L. Folk developed a classification system that places primary emphasis on the detailed composition of grains and interstitial material in carbonate rocks. Based on composition, there are three main components: allochems (grains), matrix (mostly micrite), and cement (sparite). The Folk system uses two-part names; the first refers to the grains and the second is the root. It is helpful to have a petrographic microscope when using the Folk scheme, because it is easier to determine the components present in each sample.

Dunham classification

The Dunham scheme focuses on depositional textures. Each name is based upon the texture of the grains that make up the limestone. Robert J. Dunham published his system for limestone in 1962; it focuses on the depositional fabric of carbonate rocks. Dunham divides the rocks into four main groups based on relative proportions of coarser clastic particles. Dunham names are essentially for rock families. His efforts deal with the question of whether or not the grains were originally in mutual contact, and therefore self-supporting, or whether the rock is characterized by the presence of frame builders and algal mats. Unlike the Folk scheme, Dunham deals with the original porosity of the rock. The Dunham scheme is more useful for hand samples because it is based on texture, not the grains in the sample.



To get the log permission, please answer the following questions:

1. Describe the texture AND color of the limestone at Cathedral?

2. Is this limestone biological or chemical limestone? Why?

3. Search the EC locations and find at least one fossil. Is this fossil direct evidence or indirect evidence of past life? (explain)

4. Explain how the limestone can „foam“ (effervesce).

5. On which (or between) geographic latitude is most of limestone-forming environments?

6. Why Dunham’s classification is better than Folk’s classification?

7. Take a photo with GPS (optional)


Please email me your answers in english (via GC-Profile). You don't have to wait for a permission to log. If your answers are incorrect, I will inform you



Additional Hints (No hints available.)