Skip to content

Chromium - Element 24 Traditional Cache

Hidden : 5/2/2021
Difficulty:
2 out of 5
Terrain:
1.5 out of 5

Size: Size:   micro (micro)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:


First the junior high chemistry lesson:

Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium is the main additive in stainless steel, to which it adds anti-corrosive properties. Chromium is also highly valued as a metal that is able to be highly polished while resisting tarnishing. Polished chromium reflects almost 70% of the visible spectrum, with almost 90% of infrared light being reflected. The name of the element is derived from the Greek word χρῶμα, chrōma, meaning color, because many chromium compounds are intensely colored.

Ferrochromium alloy is commercially produced from chromite by silicothermic or aluminothermic reactions and chromium metal by roasting and leaching processes followed by reduction with carbon and then aluminium. Chromium metal is of high value for its high corrosion resistance and hardness. A major development in steel production was the discovery that steel could be made highly resistant to corrosion and discoloration by adding metallic chromium to form stainless steel. Stainless steel and chrome plating (electroplating with chromium) together comprise 85% of the commercial use.

Chromium is extremely hard, and is the third hardest element behind carbon (diamond) and boron. Its Mohs hardness is 8.5, which means that it can scratch samples of quartz and topaz, but can be scratched by corundum. Chromium is highly resistant to tarnishing, which makes it useful as a metal that preserves its outermost layer from corroding, unlike other metals such as copper, magnesium, and aluminium.

Chromium has a melting point of 1907 °C (3465 °F), which is relatively low compared to the majority of transition metals. However, it still has the second highest melting point out of all the Period 4 elements, being topped by vanadium by 3 °C (5 °F) at 1910 °C (3470 °F). The boiling point of 2671 °C (4840 °F), however, is comparatively lower, having the third lowest boiling point out of the Period 4 transition metals alone behind manganese and zinc.

Native metallic chromium

Chromium is the 21st most abundant element in Earth's crust with an average concentration of 100 ppm. Chromium compounds are found in the environment from the erosion of chromium-containing rocks, and can be redistributed by volcanic eruptions. Chromium is mined as chromite (FeCr2O4) ore.

About two-fifths of the chromite ores and concentrates in the world are produced in South Africa, about a third in Kazakhstan, while India, Russia, and Turkey are also substantial producers. Untapped chromite deposits are plentiful, but geographically concentrated in Kazakhstan and southern Africa. Although rare, deposits of native chromium exist. The Udachnaya Pipe in Russia produces samples of the native metal. This mine is a kimberlite pipe, rich in diamonds, and the reducing environment helped produce both elemental chromium and diamonds.

Chromium is the reason for the red color of rubies

Chromium minerals as pigments came to the attention of the west in the eighteenth century. On 26 July 1761, Johann Gottlob Lehmann found an orange-red mineral in the Beryozovskoye mines in the Ural Mountains which he named Siberian red lead. Though misidentified as a lead compound with selenium and iron components, the mineral was in fact crocoite with a formula of PbCrO4. In 1770, Peter Simon Pallas visited the same site as Lehmann and found a red lead mineral that was discovered to possess useful properties as a pigment in paints. After Pallas, the use of Siberian red lead as a paint pigment began to develop rapidly throughout the region. Crocoite would be the principal source of chromium in pigments until the discovery of chromite many years later.

In 1794, Louis Nicolas Vauquelin received samples of crocoite ore. He produced chromium trioxide (CrO3) by mixing crocoite with hydrochloric acid. In 1797, Vauquelin discovered that he could isolate metallic chromium by heating the oxide in a charcoal oven, for which he is credited as the one who truly discovered the element. Vauquelin was also able to detect traces of chromium in precious gemstones, such as ruby and emerald.

Louis Nicolas Vauquelin

During the nineteenth century, chromium was primarily used not only as a component of paints, but in tanning salts as well. For quite some time, the crocoite found in Russia was the main source for such tanning materials. In 1827, a larger chromite deposit was discovered near Baltimore, United States, which quickly met the demand for tanning salts much more adequately than the crocoite that had been used previously. This made the United States the largest producer of chromium products until the year 1848, when larger deposits of chromite were uncovered near the city of Bursa, Turkey.With the development of  metallurgy and chemical industries in the Western world, the need for chromium increased.

Chromium is also famous for its reflective, metallic luster when polished. It is used as a protective and decorative coating on car parts, plumbing fixtures, furniture parts and many other items, usually applied by electroplating. Chromium was used for electroplating as early as 1848, but this use only became widespread with the development of an improved process in 1924.

 

 

 

Additional Hints (Decrypt)

Zntargvp

Decryption Key

A|B|C|D|E|F|G|H|I|J|K|L|M
-------------------------
N|O|P|Q|R|S|T|U|V|W|X|Y|Z

(letter above equals below, and vice versa)