Skip to content

Fluorine - Element 9 Traditional Geocache

This cache has been archived.

Allondro: The cache has gone away and I'm now disabled, so the cache will be too.

More
Hidden : 8/22/2006
Difficulty:
2 out of 5
Terrain:
2 out of 5

Size: Size:   not chosen (not chosen)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:

Located in Otto Jarstad Park. Terrain is salal underbrush.

There was some confusion with the original Fluorine cache. It had been reported that it was muggled, and indeed, when I went to check on it, I couldn't find it either. Having seen two different caches disappear from the park, I decided to move it.

Imagine my surprise when people began finding it at the original site. I had already moved it, then archived it.

The original cache is back in it's original spot, but Fluorine is so darned interesting I moved the second cache and revealed more information on Flourine. So be enlightened and find both caches!


First: The junior high chemistry lesson:

Fluorine is the most reactive of all elements and no chemical substance is capable of freeing fluorine from any of its compounds. For this reason, fluorine does not occur free in nature and was extremely difficult for scientists to isolate. The first recorded use of a fluorine compound dates to around 1670 to a set of instructions for etching glass that called for Bohemian emerald (CaF2). Chemists attempted to identify the material that was capable of etching glass and George Gore was able to produce a small amount of fluorine through an electrolytic process in 1869. Unknown to Gore, fluorine gas explosively combines with hydrogen gas. That is exactly what happened in Gore's experiment when the fluorine gas that formed on one electrode combined with the hydrogen gas that formed on the other electrode.

Ferdinand Frederic Henri Moissan, a French chemist, was the first to successfully isolate fluorine in 1886. He did this through the electrolysis of potassium fluoride (KF) and hydrofluoric acid (HF). He also completely isolated the fluorine gas from the hydrogen gas and he built his electrolysis device completely from platinum. His work was so impressive that he was awarded the Nobel Prize for chemistry in 1906. Today, fluorine is still produced through the electrolysis of potassium fluoride and hydrofluoric acid as well as through the electrolysis of molten potassium acid fluoride (KHF2).



Fluorine is added to city water supplies in the proportion of about one part per million to help prevent tooth decay. Sodium fluoride (NaF), stannous(II) fluoride (SnF2) and sodium monofluorophosphate (Na2PO3F) are all fluorine compounds added to toothpaste, also to help prevent tooth decay. Hydrofluoric acid (HF) is used to etch glass, including most of the glass used in light bulbs. Uranium hexafluoride (UF6) is used to separate isotopes of uranium. Crystals of calcium fluoride (CaF2), also known as fluorite and fluorspar, are used to make lenses to focus infrared light. Fluorine joins with carbon to form a class of compounds known as fluorocarbons. Some of these compounds, such as dichlorodifluoromethane (CF2Cl2), were widely used in air conditioning and refrigeration systems and in aerosol spray cans, but have been phased out due to the damage they were supposed to be causing to the earth's ozone layer. The ozone hole has since been shown to be a natural phenomenon with an 11 year cycle corresponding to the sunspot cycle.

Additional Hints (Decrypt)

Va gur haqreoehfu ba n xabyy.

Decryption Key

A|B|C|D|E|F|G|H|I|J|K|L|M
-------------------------
N|O|P|Q|R|S|T|U|V|W|X|Y|Z

(letter above equals below, and vice versa)